3.91 \(\int \frac{1-x^2}{1-5 x^2+x^4} \, dx\)

Optimal. Leaf size=46 \[ \frac{\tanh ^{-1}\left (\frac{2 x+\sqrt{3}}{\sqrt{7}}\right )}{\sqrt{7}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{3}-2 x}{\sqrt{7}}\right )}{\sqrt{7}} \]

[Out]

-(ArcTanh[(Sqrt[3] - 2*x)/Sqrt[7]]/Sqrt[7]) + ArcTanh[(Sqrt[3] + 2*x)/Sqrt[7]]/Sqrt[7]

________________________________________________________________________________________

Rubi [A]  time = 0.0351032, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {1161, 618, 206} \[ \frac{\tanh ^{-1}\left (\frac{2 x+\sqrt{3}}{\sqrt{7}}\right )}{\sqrt{7}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{3}-2 x}{\sqrt{7}}\right )}{\sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - x^2)/(1 - 5*x^2 + x^4),x]

[Out]

-(ArcTanh[(Sqrt[3] - 2*x)/Sqrt[7]]/Sqrt[7]) + ArcTanh[(Sqrt[3] + 2*x)/Sqrt[7]]/Sqrt[7]

Rule 1161

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e - b/c, 2]},
Dist[e/(2*c), Int[1/Simp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !Lt
Q[(2*d)/e - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1-x^2}{1-5 x^2+x^4} \, dx &=-\left (\frac{1}{2} \int \frac{1}{-1-\sqrt{3} x+x^2} \, dx\right )-\frac{1}{2} \int \frac{1}{-1+\sqrt{3} x+x^2} \, dx\\ &=\operatorname{Subst}\left (\int \frac{1}{7-x^2} \, dx,x,-\sqrt{3}+2 x\right )+\operatorname{Subst}\left (\int \frac{1}{7-x^2} \, dx,x,\sqrt{3}+2 x\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{3}-2 x}{\sqrt{7}}\right )}{\sqrt{7}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{3}+2 x}{\sqrt{7}}\right )}{\sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0142958, size = 40, normalized size = 0.87 \[ \frac{\log \left (x^2+\sqrt{7} x+1\right )-\log \left (-x^2+\sqrt{7} x-1\right )}{2 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - x^2)/(1 - 5*x^2 + x^4),x]

[Out]

(-Log[-1 + Sqrt[7]*x - x^2] + Log[1 + Sqrt[7]*x + x^2])/(2*Sqrt[7])

________________________________________________________________________________________

Maple [B]  time = 0.055, size = 82, normalized size = 1.8 \begin{align*}{\frac{ \left ( 6+2\,\sqrt{21} \right ) \sqrt{21}}{42\,\sqrt{7}+42\,\sqrt{3}}{\it Artanh} \left ( 4\,{\frac{x}{2\,\sqrt{7}+2\,\sqrt{3}}} \right ) }+{\frac{ \left ( -6+2\,\sqrt{21} \right ) \sqrt{21}}{42\,\sqrt{7}-42\,\sqrt{3}}{\it Artanh} \left ( 4\,{\frac{x}{2\,\sqrt{7}-2\,\sqrt{3}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^2+1)/(x^4-5*x^2+1),x)

[Out]

2/21*(3+21^(1/2))*21^(1/2)/(2*7^(1/2)+2*3^(1/2))*arctanh(4*x/(2*7^(1/2)+2*3^(1/2)))+2/21*(-3+21^(1/2))*21^(1/2
)/(2*7^(1/2)-2*3^(1/2))*arctanh(4*x/(2*7^(1/2)-2*3^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x^{2} - 1}{x^{4} - 5 \, x^{2} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^4-5*x^2+1),x, algorithm="maxima")

[Out]

-integrate((x^2 - 1)/(x^4 - 5*x^2 + 1), x)

________________________________________________________________________________________

Fricas [A]  time = 1.39183, size = 104, normalized size = 2.26 \begin{align*} \frac{1}{14} \, \sqrt{7} \log \left (\frac{x^{4} + 9 \, x^{2} + 2 \, \sqrt{7}{\left (x^{3} + x\right )} + 1}{x^{4} - 5 \, x^{2} + 1}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^4-5*x^2+1),x, algorithm="fricas")

[Out]

1/14*sqrt(7)*log((x^4 + 9*x^2 + 2*sqrt(7)*(x^3 + x) + 1)/(x^4 - 5*x^2 + 1))

________________________________________________________________________________________

Sympy [A]  time = 0.101374, size = 39, normalized size = 0.85 \begin{align*} - \frac{\sqrt{7} \log{\left (x^{2} - \sqrt{7} x + 1 \right )}}{14} + \frac{\sqrt{7} \log{\left (x^{2} + \sqrt{7} x + 1 \right )}}{14} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**2+1)/(x**4-5*x**2+1),x)

[Out]

-sqrt(7)*log(x**2 - sqrt(7)*x + 1)/14 + sqrt(7)*log(x**2 + sqrt(7)*x + 1)/14

________________________________________________________________________________________

Giac [A]  time = 1.14646, size = 53, normalized size = 1.15 \begin{align*} -\frac{1}{14} \, \sqrt{7} \log \left (\frac{{\left | 2 \, x - 2 \, \sqrt{7} + \frac{2}{x} \right |}}{{\left | 2 \, x + 2 \, \sqrt{7} + \frac{2}{x} \right |}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^4-5*x^2+1),x, algorithm="giac")

[Out]

-1/14*sqrt(7)*log(abs(2*x - 2*sqrt(7) + 2/x)/abs(2*x + 2*sqrt(7) + 2/x))